In an age where technology is advancing at an unprecedented pace, Artificial Intelligence (AI) stands out as a transformative force. For associations, AI offers many opportunities to enhance member engagement, streamline operations, and deliver personalized experiences. However, the challenge lies in effectively integrating your association's unique content into the AI ecosystem. And spoiler alert... It’s not as difficult as you might think.
We'll explore three primary approaches to achieve this integration, each with its own set of advantages and challenges. These methods range from using a vector store and prompt engineering to fine-tuning general-purpose Language Learning Models (LLMs) like GPT-3.5 or GPT-4, and even building a custom LLM from scratch. As we dive into these options, we'll consider factors like cost, technical expertise required, and the level of customization you can achieve.
Before we tackle the technicalities, let's discuss why AI should be on your radar in the first place. For associations, AI can be a game-changer in the following ways:
The world of AI is not static; it's evolving at a breakneck speed. Just six months ago, the cost and complexity of implementing AI solutions were prohibitive for most associations. However, the landscape has changed dramatically. Fine-tuning an LLM, for instance, has become significantly more affordable and accessible. This democratization of AI technology means that even smaller associations with limited budgets can now consider leveraging AI to enhance their operations and member services.
Keep an eye on these trends - what may seem like a costly or complex endeavor today will likely become very manageable in the near future. A failure to embrace technological advances, including AI solutions, could leave your association lagging behind. It might sound like a lot of work up front, but many of these solutions are easier to employ than they seem and will drastically improve productivity. Let’s get into it...
A vector store is essentially a database that holds pre-processed information in a format that's easy for AI to understand. Prompt engineering, on the other hand, involves crafting specific questions or "prompts" that guide the AI in retrieving and presenting this information.
We’re sure your association has tons of articles, FAQs, and other content. Did you know that you can convert this content into a machine-readable format and store it in a vector store? With data in a vector store, an AI-powered chatbot can use carefully engineered prompts to pull relevant information for your members. It’s as simple as this quick workflow:
Pros:
Cons:
This method is particularly well-suited for small to medium-sized associations with limited budgets and technical resources. If you're looking to dip your toes into the AI waters without making a significant investment, this could be your best starting point.
But... does this method exist yet? Indeed! Betty Bot is an AI chatbot trained on an association’s entire library of content. Once all that content (newsletters, webinars, journals, pdfs, and more) is in the vector store, Betty can reference it to interact with members in that association’s voice and expertise.
By opting for a vector store and prompt engineering, you can make a relatively low-risk entry into the world of AI. It's a practical way to enhance member services without breaking the bank or requiring a team of AI specialists.
Fine-tuning is the process of adapting a pre-trained general-purpose LLM (like ChatGPT) to respond in a specific manner that aligns with your association's needs. So how is this different from the first approach? The first method we discussed provides the model with new information. Fine-tuning, on the other hand, allows the model to respond in a specific tone or format without teaching it anything new.
The fine-tuning process involves several steps:
Pros:
Cons:
This approach is ideal for medium to large associations that have a moderate budget and some technical resources. If you're looking to make the model respond in a specific way without necessarily teaching it new information, fine-tuning could be the right choice for you. It might be helpful to think of this option as the middle tier to AI programming.
A custom LLM (like Llama 2) is a language model that you build from the ground up, tailored specifically for your association's needs. Unlike fine-tuning an existing model, this approach involves training a model on both public data and your organization's unique content. The result is a completely customized solution for your organization and members.
The process of building a custom LLM involves several steps:
Pros:
Cons:
Custom LLMs are best suited for large associations with substantial budgets and technical resources. If you're looking for the highest level of customization and are willing to make a significant investment, this is the approach for you.
While the three approaches outlined above are the most common, there are alternative methods worth considering, such as API-based solutions, hybrid models, or even outsourcing to AI consultancies.
The rapidly evolving landscape of AI offers a range of options for associations looking to integrate their unique content. The first approach allows you to train the model on your association’s content. The second approach allows you to fine-tune an existing model to make it respond in a way that fits your association’s needs. The third approach does all that and more to create a custom-built solution for your organization.
Whether you're a small association just starting with AI or a large organization looking to maximize customization, there's an approach that fits your needs and resources. If you aren’t sure exactly where to start, we recommend getting your hands dirty! The only way to find the perfect AI solution for your association is to test out the models that already exist to decipher which capabilities are most important to your organization.
Try out ChatGPT, Claude, or Bard when you have some free time. Or better yet, try out an AI model built exclusively for associations: Betty Bot. You can try Betty out for yourself right here on the Sidecar website by creating a free account!